Computation of a Moving Drop/bubble on a Solid Surface Using a Front-tracking Method
نویسندگان
چکیده
In this paper we outline a front-tracking method for computing the moving contact line. In particular, we are interested in the motion of two-dimensional drops and bubbles on a partially wetting surface exposed to shear flows. Peskin’s Immersed Boundary Method is used to model the liquid-gas interface, similar to the approach used by Unverdi and Traggvason. The movement near the moving contact line is modelled by a slip condition, the value of the dynamic contact angle is determined by a linear model, and the local forces are introduced at the moving contact lines based on a relationship of moving contact angle and contact line speed. Numerical examples show that the method can be applied to the motion of drops and bubbles on a solid surface over a wide range of parameter values.
منابع مشابه
Computational Simulation of Hydrodynamic Convection in Rising Bubble Under Microgravity Condition
In this work, rising of a single bubble in a quiescent liquid under microgravity condition was simulated. The related unsteady incompressible full Navier-Stokes equations were solved using a conventional finite difference method with a structured staggered grid. The interface was tracked explicitly by connected marker points via hybrid front capturing and tracking method. One field approximatio...
متن کاملHydrodynamics of a Gas-Solid Fluidized Bed at Elevated Temperatures Using the Radioactive Particle Tracking Technique
Effect of temperature on hydrodynamics of bubbling gas-solid fluidized beds was investigated. Experiments were carried out in the range of 25-600 ºC and different superficial gas velocities in the range of 0.17-0.78 m/s with sand particles. Time-position trajectory of particles was obtained by radioactive particle tracking technique. These data were used for determination of mean velocitie...
متن کاملEffect of Nondimensional Parameters On the Internal Circulation of a Liquid Drop Moving with the Surrounding Gas
The internal flow circulation dynamics of a liquid drop moving in a co- or counter-flowing gas stream has been numerically studied. The present work is concerned with the time accurate numerical solution of the two phase flow field at the low Mach number limit with an appropriate volume tracking method to capture motion and deformation of a liquid drop. It is shown that relative velocity betwee...
متن کاملEffect of Nondimensional Parameters On the Internal Circulation of a Liquid Drop Moving with the Surrounding Gas
The internal flow circulation dynamics of a liquid drop moving in a co- or counter-flowing gas stream has been numerically studied. The present work is concerned with the time accurate numerical solution of the two phase flow field at the low Mach number limit with an appropriate volume tracking method to capture motion and deformation of a liquid drop. It is shown that relative velocity betwee...
متن کاملDevelopment of a Moving Finite Element-Based Inverse Heat Conduction Method for Determination of Moving Surface Temperature
A moving finite element-based inverse method for determining the temperature on a moving surface is developed. The moving mesh is generated employing the transfinite mapping technique. The proposed algorithms are used in the estimation of surface temperature on a moving boundary with high velocity in the burning process of a homogenous low thermal diffusivity solid fuel. The measurements obtain...
متن کامل